

BELUGA GARDEN

MŰSZAKI LEÍRÁS

GENERAL DESCRIPTION

PLANNING AREA

The planning site is located in Budapest's 13th District, within the area bounded by Népfürdő Street, Bodor Street, Jakab József Street, and Dagály Promenade (land registry number: 25872/3), and is physically situated at 7 Bodor Street, 1138 Budapest. The present development will be implemented on the eastern part of the plot, adjoining Jakab József Street, with partially commercial use on the ground floor and residential functions on the upper floors.

The immediate surroundings of the property are characterized by a metropolitan urban fabric with mixed-use buildings of ground floor plus 3–6–8 storeys, featuring both detached and closed-row/perimeter block developments, with Jakab József Street consisting predominantly of newly developed properties. The planned building has a flat-roof design and, in both its appearance and choice of materials, harmonizes with its surrounding environment.

ACCESSIBILITY

Vehicular access around the building is possible from Jakab József Street. On one side of the ground floor and on the basement level, an underground garage will be constructed, which can be accessed via an internal ramp within the building, opening from Jakab József Street. The ground-floor parking area is also accessible from Jakab József Street.

The basement-level parking facility has been designed to also provide residents of the Beluga Bay mixed-use building, constructed under a separate development, with vehicular access and exit toward Jakab József Street, via a building section connected to the basement level and classified as a separate fire compartment.

The building can be accessed on foot by walking around it from Bodor Street, Jakab József Street, and Dagály Promenade. It is separated from the adjacent Beluga Bay residential building by a public park to be operated by the 13th District Municipality, which is to be completed soon and will offer excellent opportunities for a wide range of recreational activities. The pedestrian entrance to the building is accessible from Dagály Promenade. The building will contain one stairwell and two elevators.

DESCRIPTION OF THE BUILDING AND ITS FUNCTION

The planned building comprises an underground garage on the basement level; retail units with separate entrances, independent from the residential function, as well as a parking garage on the ground floor; and residential apartments on the upper floors, with a total of basement + ground floor + 8 storeys. A total of 105 apartments will be created on the upper floors. The apartments are provided with balconies and/or terraces, oriented partly toward the surrounding streets and the public park, and partly toward the inner courtyard.

The retail units and their associated service areas have been designed as independent functional units, each with separate entrances connected to Dagály Promenade and to the intersection of Bodor Street and Jakab József Street. Each unit includes its own sanitary facilities and janitorial room. Goods delivery to the retail units is ensured via doors opening toward the ground-floor garage and from the street side.

LANDSCAPE ARCHITECTURAL CONCEPT

PUBLIC PARK

The green areas of the public park are based on the site's natural level differences and the intelligent use of rainwater. The aim of the garden is to provide residents with a pleasant, relaxing environment while connecting the green spaces of the separate buildings into a coherent, thoughtfully designed system.

The rain garden located in the southern part of the park collects water from the roofs, contributing to the maintenance of the green areas, while offering park visitors shaded paths and diverse vegetation. The gently sloping terrain, groups of trees, and embankments subtly soften the urban impact of the surrounding buildings and provide opportunities for relaxation. Toward the Beluga Bay building, the embankment is more densely planted, while toward the Beluga Garden development it transitions into a gentler slope with a grassy resting area.

Along the garden promenade, a sunbathing lawn connects to the green system, from which Dagály Promenade can be accessed, linking the public park with nearby buildings and creating a strong connection to the surrounding environment. Visual and climatic protection is provided by the rain gardens running along the perimeter, as well as by the stepped terrain and its three-tiered vegetation system with tree groups.

The garden's climate-protective elements—park-like green areas, woodland strips, and rain gardens—not only offer aesthetic value but also contribute to improving the local

microclimate. As a result, the park provides a livable, diverse, and cooler, nature-oriented living space within the urban environment.

INNER GARDEN

The purpose of the inner garden is to offer residents a calming environment in everyday life. Within the garden, gently undulating concrete landscape elements animate the central space, creating visual variety and, together with the surrounding seating surfaces, providing pleasant areas for relaxation.

The garden consists of evergreen ground covers, sculpted pine groups, and shade-tolerant perennials that visually “cool” the space and help residents disconnect from the fast pace of urban life. Parts of the building are screened by outward-facing, trellis-supported green walls, ensuring a complete garden experience from every viewpoint.

RESIDENTIAL PARKING SPACES AND STORAGE ROOMS

Parking spaces for residents will be provided within the building on two levels (ground floor and basement). For selected parking spaces, the option to install electric vehicle charging infrastructure will be available; this may be requested based on individual consultation and is subject to an additional fee beyond the purchase price. In the underground garage, the clear height at circulation areas and parking spaces is generally at least 210 cm or higher.

The standard parking space dimensions are generally 2.50 × 5.00 meters, with a minimum area of 12 m².

Smaller parking spaces are classified as reduced-size spaces, as one or both of their dimensions are smaller than the standard size. The reduced-size parking spaces provided in the building are as follows:

- **Ground floor:** P-023, P-027, P-028, P-033
- **Basement:** P-P25, P-P30, P-P34, P-P35, P-P40

Premium parking spaces are also included in the project; these have one or both dimensions larger than the standard size, with a minimum area of 14 m². The premium parking spaces provided in the building are:

- **Basement:** P-P01, P-P10

Residential storage rooms will be created on the ground floor and in the basement in various sizes to meet all needs. Some storage rooms are assigned to specific parking spaces, while

others are completely independent. The floors of the storage rooms will have hard (cold) flooring, and the walls will be painted. The clear height of the storage rooms varies, and in some cases mechanical, ventilation, or other service ducts may pass through them.

WASTE STORAGE AREAS

Household municipal and selectively collected waste generated in the planned apartments will be collected on the ground floor, in a waste storage room accessible from the corridor connected to the main entrance. The two retail units located on the ground floor will each have their own daily waste storage room.

The common waste storage room on the ground floor will have washable finishes, with non-slip flooring and wall tiling extending up to the ceiling. The room is designed to include a wall-mounted water outlet and a floor drain to allow for water supply and cleaning. The required ventilation will be mechanically provided and ducted above roof level.

DESCRIPTION OF BUILDING STRUCTURES AND MATERIALS

FOUNDATIONS

A watertight reinforced concrete raft foundation will be constructed beneath the building, from which the vertical structural frame will be dowelled and extended. The wall structures and columns will be supported directly on the watertight raft foundation.

LOAD-BEARING STRUCTURES

The vertical load-bearing structures consist of monolithic and prefabricated reinforced concrete column frames, as well as prefabricated and monolithic reinforced concrete walls with thicknesses of 20, 25, and 30 cm. Structural stability is ensured by reinforced concrete shear walls placed on each level in accordance with the structural design documentation.

The external wall structures are also made of prefabricated and/or monolithic reinforced concrete. Above external openings, built-in roller shutter boxes suitable for plastering will be installed. Above openings in internal masonry walls, lintels will be provided.

Floor slabs at the basement and ground floor levels are 25 cm thick monolithic reinforced concrete slabs with monolithic reinforced concrete beams. From the first floor upwards, prefabricated slab elements with on-site concrete topping will be used, in accordance with the structural design.

Balconies are constructed from prefabricated reinforced concrete elements, with thermal break connectors installed at the plane of the façade walls to ensure proper thermal performance of the apartments.

The roof slab is a prefabricated reinforced concrete slab system, designed as a flat roof or green roof. The flat roof covering consists of PVC waterproofing membrane with gravel ballast or green roof layers. Rainwater drainage from the roof slab is provided via internal drainage, while drainage from balconies and terraces is provided externally.

VERTICAL CIRCULATION

The building includes one stairwell. The staircase is constructed of prefabricated reinforced concrete according to the structural plans and finished with a floating floor system. Two elevators are installed adjacent to the stairwell, ensuring barrier-free vertical circulation. All levels of the building are accessible by elevator.

INFILL AND PARTITION WALLS

Internal partition walls are constructed from 10 cm thick aerated concrete masonry. In areas with increased acoustic requirements, sound-insulating walls made of appropriately thick calcium silicate bricks or technically equivalent materials will be used.

THERMAL AND ACOUSTIC INSULATION

A 15 cm thick external thermal insulation system will be applied to the façade walls. At the plinth level (at least up to 30 cm above finished ground level), AUSTROTHERM XPS TOP P GK insulation or a technically equivalent product will be installed.

For impact sound insulation, a 5 cm thick ÖKOCELL CSEND lightweight concrete layer will be applied as a floating screed within the intermediate floor slabs.

On the roof slab, 12–14 cm thick Bach PIR thermal insulation will be installed, with slope formation provided by wedge-cut AUSTROTHERM AT-N 150 insulation of varying thickness. A single layer of bituminous membrane will serve as vapor control beneath the insulation layers.

DOORS, WINDOWS, AND SHADING SYSTEMS

FAÇADE OPENINGS

Planned external balcony doors and windows are triple-glazed, warm-edge, center-sealed PVC window systems. On the ground floor, thermally broken aluminum windows and doors will be installed in accordance with the architectural plans. For windows with internal parapets, plastic interior window sills will be installed, while exterior window sills will be aluminum, matching the exterior color of the window frames.

Provision is made for the installation of roller shutters and insect screens for the windows, available upon individual request and subject to an additional fee beyond the purchase price.

Empty roller shutter boxes will be installed above the façade openings of the apartments. Upon request, a unified aluminum roller shutter system with motorized operation can be installed, matching the exterior color of the windows. The shading system will be integrated into the smart home system, allowing control via a living room display or remotely through a mobile application, subject to internet access.

ENTRANCE DOORS

Entrance doors to apartments accessed from the internal gallery corridors are thermally insulated PVC doors, finished externally with colored foil in accordance with the architectural plans.

INTERIOR DOORS

Interior doors within the apartments are provided in standard sizes of 75/210 cm, 90/210 cm, and 100/210 cm according to the floor plans. The doors feature hollow-core infill and are finished with painted white surfaces or CPL foil, selected from the project's material selection catalogue.

SURFACES AND FINISHES

FAÇADE

The building façade is primarily finished with textured render, with certain sections featuring mounted façade cladding in accordance with the architectural design.

Balcony slabs are exposed concrete-quality prefabricated elements and do not receive additional surface treatment. Walking surfaces are finished with ceramic tiling, uniformly applied throughout the building.

Balcony separation elements with a minimum height of 2.20 m will be installed to prevent visual transparency and access between units.

Both the external balconies and the internal gallery corridors will feature galvanized rod railings. In the stairwell, slender steel safety railings with aesthetic surface treatment will be installed.

INTERIOR SURFACES

Common area finishes will be executed uniformly throughout the building in accordance with the architectural plans.

Interior walls and ceilings of rooms will be finished with dispersion paint after surface smoothing. In wet areas, ceramic wall tiling will be installed up to the ceiling.

WATERPROOFING

Protection against precipitation is provided by PVC waterproofing membranes on floor slabs and roof structures, along with their underlying layers. On the slab above the P1 basement level and the courtyard slab above the ground floor, bituminous waterproofing against rainwater will be applied and extended up external walls to a minimum height of 30 cm above finished walking level.

Protection against groundwater is ensured by the watertight concrete raft foundation. Beneath the stairwell and elevator cores, a Preprufe 300R waterproofing membrane will be installed prior to placing the foundation reinforcement. Waterproofing against ground moisture for the superstructure consists of two layers of bituminous membrane applied to external walls and extended to a minimum height of 30 cm above finished ground level.

Upper-floor balconies, roof terraces, and the roof slab will receive a single layer of 2 mm thick PVC waterproofing membrane.

In wet areas, floor structures will include liquid-applied waterproofing beneath the floor finishes, extended to the required height in accordance with applicable standards.

The materials and technical solutions specified in the description of building structures and materials chapter may, if necessary, be replaced – without separate justification or prior notice – by technically equivalent products or construction solutions with identical technical performance.

BUILDING SERVICES

The building is of mixed use, with 105 apartments and 2 retail units planned, and a garage located on part of the ground floor and in the basement. The mechanical plant room serving the building is located in the basement, while the air-source heat pumps providing the building's energy supply are installed on the roof of the 8th floor. Noise reduction for the equipment is achieved by means of a sound-insulating wall with aluminum louvered panels mounted in aluminum frames.

A two-pipe mechanical system is implemented in the building, allowing the entire building to operate either in heating or cooling mode.

To ensure accurate individual metering, dedicated cold water, hot water, and heat meters are installed for each apartment. The meters are located within the apartments above the toilets. The meters are digitally readable and can be aggregated, ensuring simple and fast data collection.

HEATING AND COOLING SYSTEM

During the design of the building, particular emphasis was placed on environmental protection and the efficient use of renewable energy sources; therefore, heat pumps are installed to meet the heating and domestic hot water demand of the residential building.

HEAT EMISSION EQUIPMENT

On the residential floors of the building, ceiling heating and cooling are installed using an active concrete system, with the option to install additional wall-mounted fan coil units in the rooms. In the bathrooms, underfloor heating is provided, supplemented by electric towel radiator heaters. During the heating season, underfloor heating is the primary heat emission system; during the cooling season, the underfloor heating system is automatically disabled by the control system.

A mixed cooling circuit is implemented in the apartments' cooling system. This configuration allows system operation to be optimized under more extreme conditions (e.g. heatwaves, high humidity) through individual apartment-level control, and also ensures the proper operation of optional auxiliary fan coil units.

Preparation for additional fan coil units is provided in the living room and in every room, enabling user demands to be met more quickly or under more extreme outdoor temperature conditions. Additional fan coil units for the apartments may be requested based on individual consultation and are subject to an additional fee beyond the purchase price.

CONTROL

From the user side, the system is controlled via the smart home system controller. Room-by-room control is provided for each apartment. The thermostats are programmable in advance, and remote control is available via internet access. Based on humidity and indoor temperature, the thermostats can automatically disable cooling in individual rooms in order to prevent condensation on the ceiling. Operation of the fan coil system is also integrated into the smart home system.

Due to the ceiling heating and cooling system, pipes run within the apartment ceilings; therefore, when drilling into or fixing elements to the ceiling, the instructions in the user manual must be followed and the use of a thermal imaging camera is required.

VENTILATION

INTERNAL ROOMS

Internal rooms without openable windows are equipped with local exhaust systems operated via switches shared with the lighting and combined with run-on timers. Exhaust fans installed in wet rooms are also equipped with humidity sensors, enabling automatic operation when necessary to ensure adequate air exchange within the apartment. Built-in wall-mounted or suspended-ceiling fans are fitted with integrated backdraft dampers.

KITCHEN EXHAUST HOOD

Provision is made above kitchen cooktops for the installation of an exhaust hood, with the extracted air discharged above roof level via a common exhaust duct.

When installing the kitchen, attention must be paid to the performance of the exhaust hood depending on the distance to the connection point. Only kitchen exhaust units equipped with rubber-sealed backdraft dampers may be installed. A maximum airflow rate of 200 m³/h at 200 Pa pressure may be extracted by a single kitchen exhaust unit.

HUMIDITY-CONTROLLED AIR INLET ELEMENTS

In the apartments, humidity-controlled air inlet vents are installed in the façade windows, regulating airflow according to the relative humidity of the indoor air. This ensures adequate ventilation following activities with high moisture generation by automatically opening and closing the air-permeable louvers.

ELECTRICITY

The apartments, retail units, common areas, and fire protection mechanical systems will each be provided with separate consumption meters. For energy efficiency purposes, the heat pumps will operate from a dedicated network equipped with a separate H-tariff meter.

ENERGY PERFORMANCE CLASSIFICATION

Based on the aggregated energy performance indicators, the building complies with the requirements for nearly zero-energy buildings.

LIGHTING, OUTLETS

APARTMENTS

In the apartments, ceiling-mounted central light points integrated into the prefabricated floor slabs will be installed in accordance with the electrical plans, in quantities appropriate to the size of each room.

As supplementary lighting, at least one cabinet lighting outlet will be provided in the living room and in each room, led out from the ceiling near the partition wall, which may also be used as decorative lighting.

Suspended ceilings will be installed in entrance halls and bathrooms, allowing flexible positioning of lighting outlets. In bathrooms, in addition to the ceiling outlet, wall-mounted lights will be installed above the washbasins.

Connections for a washing machine and a dryer will also be provided in the apartments.

In the kitchens, flexible swing-type connections will be provided for the dishwasher, oven, microwave, and refrigerator, plus one additional outlet, to allow more flexible furnishing. The electric cooktop may be connected directly by a qualified electrician. Power outlets for small kitchen appliances will be provided and can be flexibly arranged by the residents after handover according to the individual kitchen layout; no fixed countertop outlets will be installed. Preparation for task lighting will be provided in the kitchen.

One television connection point will be provided per room in the apartments.

Protective conduits will be installed in the apartments for a burglar alarm system, including empty conduits for a door opening sensor at the entrance door, the alarm control unit, and one motion sensor located in the entrance hall. Additional security systems are recommended to be installed without fixed cabling.

In the entrance halls, an outlet will be provided for the service provider's modem. TV and internet outlets in the rooms and living room will be cabled from this point.

On the balconies, depending on size, one or more outdoor luminaires operable from inside and at least one outdoor power socket will be installed.

Unless otherwise specified, the general installation height of power sockets is 40 cm, and the centerline height of switches is 120 cm above finished floor level. Power sockets are generally arranged horizontally, while switches are arranged vertically.

Apartment-specific electrical plans are included in the buyer coordination documentation, and the apartments will be constructed accordingly.

SMART HOME SYSTEM

A smart home system will be implemented in the apartments, allowing control of the ceiling heating/cooling and underfloor heating systems via in-room displays or remotely through a mobile application, with room-by-room regulation.

The system includes data from the apartment's utility meters, enabling monitoring of daily consumption and review of consumption data for up to one year retrospectively.

The displays include intercom integration, enabling control of common stairwell entrance doors during intercom calls, magnetic card and/or code-based door opening, and remote access via mobile phone.

Motorized built-in roller shutters may be requested for the apartments and can be controlled via the central display and mobile application.

APARTMENT FIT-OUT

FLOOR AND WALL FINISHES

Entrance hall, living–dining–kitchen:

In the entrance hall and the living–dining–kitchen area, aquastop laminate flooring with wear resistance class 33 will be installed, with color-matched skirting boards.

Rooms: In the rooms, laminate flooring with a minimum wear resistance class of 32 will be installed, with color-matched skirting boards.

Wet rooms: In bathrooms and toilet rooms, high-quality wall tiles and floor tiles will be installed.

The layout of all finishes will be carried out in accordance with the buyer coordination regulations.

SANITARY FITTINGS

Built-in cistern, wall-hung, rimless WC

Ceramic washbasin, hand wash basin – in accordance with the architectural plans

Surface-mounted stainless steel washbasin (and, where applicable, hand wash basin) mixer tap – in accordance with the architectural plans

Ergonomic bathtub, size 170 × 70 cm – in accordance with the architectural plans

Surface-mounted stainless steel bathtub filler mixer – in accordance with the architectural plans

Built-in shower with curb and glass enclosure – in accordance with the architectural plans

Surface-mounted stainless steel thermostatic shower mixer with rain shower head, with pipes routed within the wall – in accordance with the architectural plans

WARRANTY, MAINTENANCE

WARRANTY

Az ingatlanra jogszabályokban meghatározott 3 év teljes körű garanciát és 10 év szavatosságot vállalunk.

For the property, we provide a full 3-year warranty and a 10-year statutory warranty in accordance with applicable legislation.

Any modification carried out in the apartment after handover — in particular changes to finishes, sanitary fittings, mechanical systems, or electrical outlets — will automatically result in the termination of the warranty for the affected building structures and installed materials.

This applies in particular to the following structures and systems:

- water supply and drainage pipes, mechanical outlets, and connections,
- floor structures, waterproofing, and finishes,
- partition walls and associated surfaces,
- installed sanitary fittings and their accessories,
- electrical base installations, where affected by demolition or reinstallation.

In the event of any modification or dismantling of these structures, the contractor shall not be liable for subsequent water ingress, cracks, malfunctions, or other damage. In the event of later issues, the contractor will separately assess whether the defect originates from the original construction or from subsequent alterations.

MAINTENANCE

The owner is obliged to allow and tolerate access to their privately owned unit by a representative appointed by the community, without unnecessary disturbance to the owner or occupants, at an appropriate time, for the purpose of inspection related to common property building elements and equipment, emergency damage events or hazardous situations, necessary fault repairs within the private unit, and maintenance works.

iDOM Házépítő Kft. reserves the right, during implementation, to deviate from this technical specification and to install or use materials and products of identical quality instead of those specified herein.

Only first-class materials are used in the construction of the condominium, and only first-class workmanship is accepted from the contractor.

This technical specification is effective as of 19.12.2025. The right to modify the technical content is reserved.

CONTACTS DURING CONSTRUCTION

Sales office: +36 30 082 0187